
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/356302226

Application of artificial intelligence in wearable devices: Opportunities and

Challenges

Article  in  Computer Methods and Programs in Biomedicine · November 2021

DOI: 10.1016/j.cmpb.2021.106541

CITATIONS

111
READS

4,896

4 authors, including:

Roohallah Alizadehsani

Deakin University

185 PUBLICATIONS   4,965 CITATIONS   

SEE PROFILE

U Rajendra Acharya

University of Southern Queensland 

1,056 PUBLICATIONS   68,599 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Roohallah Alizadehsani on 01 December 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/356302226_Application_of_artificial_intelligence_in_wearable_devices_Opportunities_and_Challenges?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/356302226_Application_of_artificial_intelligence_in_wearable_devices_Opportunities_and_Challenges?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roohallah-Alizadehsani?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roohallah-Alizadehsani?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Deakin-University?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roohallah-Alizadehsani?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/U-Rajendra-Acharya?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/U-Rajendra-Acharya?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Southern_Queensland?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/U-Rajendra-Acharya?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roohallah-Alizadehsani?enrichId=rgreq-a0e15afcdec4ac544ccf8cd355ec18a7-XXX&enrichSource=Y292ZXJQYWdlOzM1NjMwMjIyNjtBUzoxMDk2MDU5NjE5MTQ3Nzc3QDE2MzgzMzIzODU1MDM%3D&el=1_x_10&_esc=publicationCoverPdf


 

 

Application of artificial intelligence in wearable devices: Opportunities and 

Challenges 

Darius Nahavandi1, Roohallah Alizadehsani1, Abbas Khosravi1,*, Senior, IEEE, U Rajendra 

Acharya2,3,4, Senior, IEEE 

 
1Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia 
2Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 
3Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, 

Singapore 
4Department of Bioinformatics and Medical Engineering, Asia University, Taiwan 

* Corresponding author: Abbas Khosravi, Institute for Intelligent Systems Research and Innovation (IISRI), Deakin 

University, Waurn Ponds, VIC 3216, Australia.   E-mail: abbas.khosravi@deakin.edu.au 

 
 

Abstract 
Background and objectives: Wearable technologies have added completely new and fast emerging tools 

to the popular field of personal gadgets. Aside from being fashionable and equipped with advanced 

hardware technologies such as communication modules and networking, wearable devices have the potential 

to fuel artificial intelligence (AI) methods with a wide range of valuable data. 

Methods: Various AI techniques such as supervised, unsupervised, semi-supervised and reinforcement 

learning (RL) have already been used to carry out various tasks. This paper reviews the recent applications 

of wearables that have leveraged AI to achieve their objectives.  

Results: Particular example applications of supervised and unsupervised learning for medical diagnosis 

are reviewed. Moreover, examples combining the internet of things, wearables, and RL are reviewed. 

Application examples of wearables will be also presented for specific domains such as medical, industrial, 

and sport. Medical applications include fitness, movement disorder, mental health, etc. Industrial 

applications include employee performance improvement with the aid of wearables. Sport applications are 

all about providing better user experience during workout sessions or professional gameplays.  

Conclusion: The most important challenges regarding design and development of wearable devices and 

the computation burden of using AI methods are presented. Finally, future challenges and opportunities for 

wearable devices are presented. 

Keywords: Wearable devices, Healthcare, Machine learning, Deep learning, Internet of things 

1 Introduction 
Wearables are small electronic and mobile devices, or computers with wireless communication 

capabilities incorporated into gadgets, accessories, or clothes, which can be worn on the human body. There 

are also invasive versions of the wearables such as micro-chips or smart tattoos [1]. Nowadays, different 

types of wearable devices have been invented. Some of the most common wearable devices are smart 

glasses and smart watches. The consumer market of the wearable devices is increasing steadily. The 

wearables are used to collect, transmit and even analyse the data commonly collected from the body of a 

human or animal. They are purely mechanical devices or intelligent mechatronic systems which are 

commonly built using sensors, actuators, and computation parts. They can be used for early diagnosis and 

management of medical conditions as well as measuring the vital signs such as body and skin temperature, 

blood pressure [2], heart rate, electrocardiogram (ECG) [3], and electroencephalogram (EEG) [4]. All these 

wearable devices are implemented with various technologies, capabilities and costs. People who use these 

technologies may need some skills to work with them. 

Wearable devices are classified based on their requirement and usage. Some of them are used according 

to the instructions of physicians to avoid serious problems. However, some wearables are not used in 



 

 

medical fields [5-7]. In [8], a comprehensive review of wearable devices was done in which, smart wearable 

devices such as watches, eyewear, headsets, jewellery, rings, chains, garments, and bracelets were described. 

The list of these devices can be seen in Figure 1 [9]. 

 

  

Figure 1. Different categories of wearables used. 

Wearable devices are made in different forms to meet their usage requirements. They are commonly in 

small size while they are expected to sense continuously. They should be able to collect data and process 

them to improve the quality of life. Therefore, wearables need to communicate in a secure way while 

keeping their power consumption as low as possible. The security of wearable devices is a big challenge. 

They may be able to collect the data locally or send them to an external device. In both cases, the data 

should be encrypted to enforce their privacy. Given that wearable devices usually have low computational 

power, a lightweight authentication test is needed. In addition, wearable devices must be able to 

communicate in real-time; such requirement impacts on the challenge of power consumption management. 

The motivation behind this review is the fact that the emerging field of wearable devices has the 

potential to open new application opportunities in various domains. The focus of this review is on medical, 

industrial, and sport applications. We focused on the medical domain since it is directly related to the lives 

of people. With enough development, wearables have the potential to revolutionize the medical domain 

leading to cost-effective healthcare services and longer lifetimes. In the industrial domain, wearable devices 

can make workstations more ergonomic. To this end, the workers can be equipped with appropriate 

wearable devices in order to accelerate the industrial processes leading to shortened working hours and 

better psychological health.  The sport domain is also important since it can be used for medical diagnosis 

and treatment. Additionally, sport is directly related to the general well-being of society. Therefore, sport 

domain is also an important domain that is worth reviewing. 

A comprehensive review of existing wearables, their capabilities and shortcomings can shape future 

research directions. In this review, wearable devices as well as the role of AI methods to achieve various 

tasks with wearables are investigated. The employed paper collection strategy is outlined in section 2. 

Various wearables are reviewed briefly in section 3. Denoising methods used in wearables are explained in 

section 4. Feature extraction, engineering and artificial intelligence methods used are described in Section 5. 

The applications of machine learning in wearable devices are presented in Section 6. Applications of 



 

 

wearables are explained in section 7. The challenges of developing wearables are reported in section 7.4. 

Discussion and future insights will be presented in Section 9 and the conclusion is given in Section 10. 

2 Paper collection strategy 
For reviewing previous papers in the field of wearables, all datasets supported by Google scholar such 

as IEEE, Science Direct, Springer, ACM Digital Library, and Hindawi were searched. The search query 

used in this work was: 

 (wearable technology healthcare OR wearable devices OR wearables OR smart wears OR wearable 

technology OR industrial wearable OR sports wearable) AND (artificial intelligence OR data mining OR 

deep learning OR machine learning). 

Three authors inspected the papers collected based on the search phrases mentioned above. Papers that 

two out of three authors agreed on their relevance to this review were selected for further analysis. Based on 

the above phrases and the opinion of the three authors, 132 papers published in high-ranked journals and 

conferences were selected. The paper selection mechanism is presented in Figure 2 in which the number of 

selected papers from each publisher is reported separately. 

 We did not limit our search to medical applications since wearable devices used in different domains 

share common hardware/software technologies. Hence, it was necessary to take a broader view during data 

collection for this review. In addition to medical domain, this review considered industrial and sport 

applications of wearables as well. The motivation was that industrial and sport applications are closely 

related to medical applications. In industrial domain, well designed wearables can be used to make the 

working environment more ergonomic reducing workers’ injuries. In sport domain, wearable devices can 

help individuals with their fitness programs leading to healthier society. 

 The selected papers were carefully studied by the three authors. The study of papers related to each of 

three major fields (medical, industrial, and sport) was assigned to one of the authors. Each author extracted 

and organized the necessary information for this review. The investigation of the selected papers was 

primarily focused on the main approach used during software/hardware implementation of the wearable 

devices. 



 

 

 

Figure 2. Paper selection mechanism 

Certainty about the outcome of the reviewed papers is verifiable since most of these papers have been 

published in top-ranked journals and conferences. Additionally, many of the reviewed papers or wearable 

devices have already been used in practice proving their capabilities. 

3 Brief review of wearables 
Wearables can be used for data collection in daily activities, sport performance, and health monitoring. 

There are different types of wearables such as smartwatches, hearing aids, electronic tattoos, wristbands, 

subcutaneous sensors, head-mounted displays, electronic textiles, and footwear as shown in Figure 3(a) [10]. 

These devices are placed on different body parts to measure electrophysiological and biochemical signals or 

deliver drugs.  



 

 

  

(a) (b) 

Figure 3. Wearables devices used to monitor physiological parameters: (a) different wearable devices which have been designed for different 

parts of human body, (b) various technologies used to transfer data collected from wearables to other devices. 

Wearable devices are used for augmented, virtual, and mixed reality, artificial intelligence, and pattern 

recognition [11, 12]. These technologies commonly contain microprocessors and sensors. Additionally, 

these devices are usually capable of recording data and exchanging them over wireless connections [13]. 

Sensors used in wearable devices include barometers and inertial measurement unit (IMU) which is 

combination of gyroscopes, accelerometers, and sometimes magnetometers. Optical sensors needed in 

spectrophotometers, cameras, chemical probes, electrodes, microphones, shock detectors, and pressure 

sensors are other types of sensors used in wearables [14]. Utilizing the sensors in multiple wearables 

provides a rich collection of data which can be analysed by researchers or used by experts to provide 

medical treatment remotely. These data can be transmitted by different types of networks [15]. As shown in 

Figure 3.b, these networks can even transmit the data over the internet. The capability of wearables to 

operate in a network of connected devices paves the road towards implementing Internet of things (IoT) 

[16].  

The existing wearable devices can be categorized based on their applications and the body parts on 

which they are mounted. Since 2016, the distribution of number of wearables in different application 

domains is shown in Figure 4.a [17]. As can be seen, the “lifestyle” application has the highest number of 

wearables (about 200) while the “pet animals” application has the least number of existing wearables. Since 

2016, the distribution of existing wearables based on their target body part is shown in Figure 4.b [17]. It is 

clear that most of the existing wearables are mounted on the head (about 65 devices), followed by torso and 

neck and then body parts have the third highest number of wearables. Figure 5 illustrates two samples of 

wearables with medical applications. Figure 5.a shows a typical head-mounted wearable used for EEG 

analysis and Figure 5.b shows a torso-mounted wearable used for ECG analysis. 



 

 

  
(a) (b) 

                       Figure 4. Distribution of number of existing wearables (as of 2016) based on: (a) application domains, (b) target body parts. 

 
(a) 

 
(b) 

Figure 5. Illustration of two typical wearables with medical applications: (a) head-mounted wearable device for EEG measurement, and (b) torso 

mounted wearable device for ECG measurement. 

4 Denoising methods used in wearables 
Signals, which have been gathered from wearable sensors, are commonly affected by noise. The noise 

sources are generated when the measuring element and the data collection system try to collect the signals. 

This section aims to introduce the AI-based hardware designed for denoising. As real information generated 

by biological systems, randomness of these systems are relatively low while the real information collected in 

time are often correlated.  

For denoising, researchers have used different methods. In [18], a sixth-order bandpass IIR filter was 

used to eliminate the noise. In another research [19], a deep convolutional neural network was used. In [20], 

the noise and baseline removal of all ECG signals were performed with Daubechies wavelet filters. In [21], 

as one of the pre-processing steps, an 8-point moving average filter was used to remove noise. To this end, 



 

 

finite windows of moving average filter were convolved with the signal. It took an average of the output 

signal for discrete-time noise reduction and enhanced the peak value identification.  

Chen et al. [22] developed a statistical model to simulate structured noise processing derived from a 

wearable sensor. Synthetic data generated using a structured noise model was studied and a factor analysis-

based method was proposed for denoising. Lee et al. [23] proposed a denoising method that references 

photoplethysmography to alleviate intrinsic and extrinsic noise in electrodermal activity. Their method 

attenuates the extrinsic noises by applying several filters such as high-pass and wavelet filters. Then, 

intrinsic respiration noises were detected and attenuated by a subject independent machine learning model 

that could detect noise. 

A new electrocardiogram (ECG) denoising technique was proposed in [24]. In their work, denoising 

was done by variable frequency complex demodulation algorithm. To remove the noise, this algorithm is 

used to perform the sub-band decomposition of the noise-contaminated ECG. More improvement in ECG 

quality is done by not only removing baseline drift but also smoothing via adaptive mean filtering. Two 

datasets were used to validate the proposed method. The performance of the proposed denoising algorithm 

was compared with other denoising algorithms and its superiority with respect to other methods is shown.  

5 Artificial Intelligence Methods 
In this section, at first, feature extraction and engineering is reviewed and then different categories of AI 

methods i.e. supervised learning, unsupervised learning, semi-supervised learning and reinforcement 

learning are introduced. These learning methods and their main subfields are shown in Figure 6.  

 

Figure 6. Different AI methods and their main subfields. 

5.1 Feature Extraction and Engineering 
Feature extraction is one of the fundamental steps in machine learning. Having too many features could 

easily confuse the machine learning algorithms [25]. Therefore, feature selection algorithms are used to 

select the clinically significant features.  The mean and mode [26] or algorithms such as principal 

components analysis (PCA) [27], linear discriminant analysis (LDA) [28], independent component analysis 

(ICA) [29], locally linear embedding (LLE) [30], and autoencoders [31] can also be used to select the 

statistically significant features. Such features can be exploited by learning methods.  

The process of extracting useful features from raw data based on domain knowledge is called feature 

engineering [32]. The first step in feature engineering is developing useful features by (i) automatic, (ii) 



 

 

manual, or (iii) fusion of both manual and automated feature extraction. The next step is feature selection in 

which a subset of extracted features is selected according to some feature scoring measure. The performance 

of selected features is then evaluated based on the target dataset. This process is repeated until satisfactory 

results are obtained. 

5.2 Supervised Learning 
The learning algorithms are divided into two main types: supervised and unsupervised. In supervised 

learning, the desired output for the training samples is known and the model is trained using the given 

samples of data and their desired outputs [33]. Generally, supervised learning is used for classification in 

which the goal is to map an input sample to the output label [34]. It is also used for regression whose goal is 

learning a mapping from inputs to continuous output. In both classification and regression, we want to find 

the correct relationships between the input and output. Indeed, we are looking for a model that can produce 

correct output data effectively. If the training data are noisy or have incorrect labels, the effectiveness of the 

trained model will be clearly degraded. Some of the common supervised learning algorithms are support 

vector machine (SVM) [35], artificial neural network (ANN) [36], Naïve Bayes [37, 38], and random forest 

[39]. 

5.3 Deep Learning 
Deep learning (DL) is part of a broader family of machine learning methods based on artificial neural 

networks (NNs). In the realm of deep learning, we often come across convolutional neural network (CNN) 

which is a special type of NN capable of handling 2D image data [40]. The primary component of a CNN is 

the convolutional layer which performs convolution on a given image. To this end, one needs to specify a 

2D array of weight values called a kernel which is smaller than the image. The convolution operation is 

simply the dot product of the kernel with a kernel sized patch of the given image [41]. The convolutional 

layer output is passed through an activation function such as ReLU1. Automatic feature extraction is one of 

the most important characteristics of CNNs. However, training CNNs usually demands high computational 

resources. In recent years, such a burden has been alleviated due to the advent of powerful graphics 

processing units (GPUs) [42]. 

5.4 Unsupervised learning 
In unsupervised learning, the objective is to learn the inherent structure of unlabelled data. The most 

usual tasks within unsupervised learning are clustering, density estimation, and representation learning. For 

this purpose, some of the algorithms such as principal component analysis (PCA) and auto-encoders have 

been proposed [43]. Exploratory analysis and dimensionality reduction are two common use cases used in 

unsupervised learning. In scenarios where the dataset analysis is impossible for humans; unsupervised 

methods can be used to gain initial insights into the data. The insights can be used for testing different 

hypotheses. For dimension reduction, the data are represented by fewer features. This process can also be 

done using unsupervised learning. To this end, the relationship between features must be discovered. It can 

help us to eliminate the redundant features. Consequently, processing the data can be done by a much less 

intensive solution [44].  

5.5 Semi-supervised learning 
In scenarios where the number of labelled samples is small while number of unlabelled samples is large, 

supervised and unsupervised learning cannot be used effectively. In this situation, semi-supervised learning 

algorithms can help. They can be trained by a small number of labelled and a large number of unlabelled 

data to predict a new example. When there are some labelled data, they can help the algorithms to use the 

unlabelled data more efficiently and produce considerable improvement in learning accuracy. Acquisition of 

labelled data to be used in learning problems commonly requires expert agents. Labelling the samples may 
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be costly and in some cases impossible due to large number of unlabelled samples. Under these 

circumstances, the importance of semi-supervised learning becomes clear [45]. 

5.6 Reinforcement learning 
The reinforcement learning (RL) is learning to map situations to suitable actions such that a numerical 

reward signal is maximized [46]. Unlike supervised learning, in RL, the learner is not provided with the 

desired action and it has to try different actions in different situations (also known as states) to figure out the 

best actions leading to the maximum reward given the observed states. It is important to learn action 

selection such that the long term utility is maximized since naively choosing to maximize the immediate 

reward might lead to suboptimal performance in the long run. RL problems can be modelled as Markov 

decision processes (MDPs). A MDP is a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅), where: 

 𝑆 is the set of states (state space) 

 𝐴 is the set of actions (action space) 

 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is called the transition function which outputs the probability of 

observing state 𝑠′ at time step t+1 provided that at time step t observed state is s and chosen action is 

𝑎. 

 𝑟𝑡+1 = 𝑅(𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′) is the expected reward if at time step t, the observed state is 𝑠 

and execution of the chosen action 𝑎 will lead to state 𝑠′ in the time step t+1. 

6 Application of machine learning algorithms in wearables 
Various machine learning methods have been used in the field of wearables. In this section, 

some of existing works which combine wearable devices with machine learning algorithms are 

reviewed. The review has been categorized based on type of machine learning methods. The 

summary of works done using wearables and AI techniques are shown in Table 1. 

6.1 Application of supervised learning methods in wearables 
Supervised learning methods are widely used in machine learning to develop the automated 

systems. Saadatnejad et al. [47] suggested a novel electrocardiogram (ECG) classification algorithm. 

On wearable devices, this method was used for continuous monitoring of cardiac disease. The 

advantage of this method was its low power consumption. Their method used multiple long short 

term memory (LSTM) recurrent neural networks and wavelet transform. Their method achieved high 

ECG classification performance. Similarly in [48], a novel ECG classification algorithm was 

proposed and used in low-power wearables based on spiking neural networks. A spike-timing 

dependent plasticity and reward-modulation were employed in which the model weights are trained 

according to the timings of spike signals. The results showed that it was suitable for real-time 

operation. Additionally, in the real-time classification of ECG signals, its energy consumption was 

significantly lower than other similar devices. In another work reported by Acharya and  Basu [49], 

the primary objective was to build classification models to identify anomalies of patients’ breathing 

sounds. These data were used for automated diagnosis of respiratory and pulmonary diseases. A deep 

learning model was used to classify respiratory sounds. Additionally, a local log quantization 

strategy was proposed to reduce the memory footprint which can be used in memory constrained 

wearable devices.  

Wearable sensors can be used in disease diagnosis based on physical movement of patients. For 

instance, Hssayeni et al. [50] used a LSTM recurrent neural network (RNN) to detect early signs of 

Parkinson’s disease (PD) using accelerometers and gyroscopes data. In another study, waist-worn 

accelerators and SVM were used to detect freezing of gate (FoG) experienced by PD patients [51]. 

The walking pattern can be used to diagnose Alzheimer disease. Varatharajan et al. [52] monitored 

walking patterns of patients using a dynamic time warping algorithm and several wearable sensors 

including accelerometers. Based on the perceived walking pattern, early signs of Alzheimer disease 

were detected. 



 

 

6.2 Application of unsupervised learning methods in wearables 
In [53],  Das et al. proposed an unsupervised learning approach for heart-rate estimation from 

electrocardiogram (ECG) data collected by wearable devices. Spatio-temporal properties of ECG 

signals were encoded directly into spike training. In the next step, the spike training was used to 

excite recurrently connected spiking neurons in a liquid state machine computation model. An 

unsupervised readout based on fuzzy c-Means clustering of spike responses was designed using 

particle swarm optimization. Their proposed method was easily implemented on spiking-based 

systems. The method advantages are its high accuracy and significantly low energy footprint. 

Consequently, the battery life of wearable devices was extended. Another unsupervised learning 

algorithm was proposed by  Krause et al. [54]. In this work, without external supervision, an online 

wearable system was designed, implemented and evaluated. It could determine the context of typical 

user and probabilities of context transition. They used statistical analysis and machine learning in 

their graph algorithm techniques. The results showed that their proposed method could determine a 

user context model while it only required data from a device with physiological sensors. 

In [55], a new version of unsupervised deep learning was proposed which optimized the data 

during preprocessing in wearable sensors. It only needed 11.25 ns as its computation time. Its 

recognition performance has been improved for feature selection and extraction. A new technique for 

data analysis has been introduced to minimize the computation time.  

6.3 Application of semi-supervised learning methods in wearables 
Wearable devices have the potential to collect huge amounts of data. However, labeling these 

data is costly and time-consuming. Therefore, it is desirable to devise methods to exploit unlabeled 

data while reducing labeling costs as much as possible. Semi-supervised approaches are promising 

approaches to use a mix of limited labeled data and a large volume of unlabeled data efficiently. 

Ballinger et al. [56] used off-the-shelf wearable heart rate sensors to collect data from numerous 

participants across the world using a mobile phone application. The objective was to detect multiple 

medical conditions such as diabetes, high cholesterol, etc. using a multi-task LSTM. Two semi-

supervised approaches were proposed that could outperform hand-engineered biomarkers from the 

medical literature. In the first approach, a LSTM was pre-trained as a sequence autoencoder. The 

pre-trained parameters were used to initialize a second supervised phase using pool of limited labeled 

data. In the second approach, the synthesized dataset was used for pre-training. 

In [57], a novel method to automatically detect near-miss falls according to a worker's kinematic 

data was proposed. These data were captured from wearable inertial measurement units (WIMUs). A 

semi-supervised learning algorithm was proposed to learn from the data. This algorithm was a 

support vector machine (SVM) which was designed for near-miss fall detection. For collecting the 

near-miss falls, two experiments were conducted. These data were used to test the proposed 

approach. This WIMU-based method can be used to identify ironworker near-miss falls without 

disrupting jobsite work and can help to prevent fall accidents. 

M. Stikic et al. [58] introduced a new method for activity recognition. In a semi-supervised 

learning process, small amounts of labeled data were combined with unlabeled data. Their proposed 

method propagated information in a graph that contains both labeled and unlabeled data. Based on 

feature similarity, two different ways were introduced to combine several graphs. The quality of the 

label propagation process and the performance of classifiers were evaluated in their research.  

For activity recognition, in [59], the feasibility of semi-supervised learning was tested to reduce 

the level of supervision. Two semi-supervised techniques (self-training and co-training) were used to 

learn activity models from few labeled data. The results of this work demonstrated that co-training 

worked better than self-training because it used additional information from sensor modalities during 

the training process. In addition, in some cases, it even could achieve better recognition accuracy 

compared to the fully supervised approaches. Their proposed method was conducted based on a 

pool-based setting. Accordingly, a large number of unlabeled training data were available in addition 



 

 

to a small set of labeled training data. The algorithm was able to select the best informative samples 

which were then labeled by an expert. Another work on human activity recognition is LabelForest 

[60]. Data collected from humans via wearables are often accompanied by a significant amount of 

noise and uncertainty. LabelForest is a non-parametric semi-supervised learning framework for 

activity recognition which improves the performance of ML algorithms by expanding the training 

set. LabelForest chooses a subset of unlabeled data for labeling. The sample selection is done based 

on similarity with the labeled samples. LabelForest framework is made of two algorithms: 1. 

spanning forest algorithm for sample selection and labeling, and 2. silhouette-based filtering method 

to select samples with more confident clustering assignment for inclusion in the training set. 

Wiechert et al. [61] collected EEG brain signals using a wearable headband called Muse from 

participants performing different tasks such as reading, listening to music, etc. The objective was to 

identify participants and the type of activity they were performing when EEG signals were being 

recorded. To this end, K-medoids with an evolutionary algorithm were combined to perform multi-

objective clustering. The genetic algorithm was used to find the most appropriate K medoids. 

Wiechert et al. reported that their method could outperform K-means. 

 

6.4 Application of reinforcement learning (RL) methods in wearables 
RL has also found its way into the field of wearable technologies. ADAS-RL [62] is a modified 

version of Q-learning algorithm. It not only integrates the behaviors but also the reactions of the 

driver to adapt and tune the warning interventions of Lane Departure Warning System (LDW) 

continuously. The proposed method is able to track any changes in driving behavior and adapt the 

frequency of warnings allowing drivers to stay within a reasonable distance i.e. about 1.75 meters 

from lane markings. FaiR-IoT (Internet of Things) [63] is another RL-based framework using Q-

learning for adaptive and fairness-aware human-in-the-loop IoT applications. The method was 

evaluated on a human-in-the-Loop smart house IoT application and human-in-the-Loop automotive 

advanced driver assistance system. In the smart house application, the objective was to control the 

home thermostats automatically by monitoring human body temperature changes over time. The job 

of the driver assistance system is to alert the driver when there is a risk of colliding with an object in 

front of the vehicle. Standard forward collision warning systems measure the time-to-crash based on 

the distance and the relative velocity of the object in front of the vehicle. If the time-to-crash is 

below a certain threshold, the system alerts the driver to apply the brakes. However, a better 

approach is making the threshold adaptive based on the driver characteristics such as his/her 

response time and whether he/she is distracted or not. FaiR-IoT has taken such factors into account 

to adjust the time-to-crash threshold dynamically. 

In the field of medical applications, some patients are in need of constant monitoring. Wearable 

sensors can make the monitoring process easier without the need for keeping the patients in the 

hospital for long periods. Baucum et al. [64] have proposed a data-driven RL framework to optimize 

PD medication regimens based on wearable sensors data. They conducted their study using a dataset 

of 26 PD patients who wore wrist-mounted movement trackers for two separate six-day periods. The 

patients’ medication regimens were modified based on physician evaluations of collected data after 

the first wear period. The method was implemented in two steps:  

1. A simulation model was built and evaluated. It provides information about individual 

patient’s movement symptoms response to medication administration. 

2. The simulation model was used for training an RL agent using policy gradient [65]. The 

trained agent was able to recommend optimal medication types, timing, and dosages during 

the day, while incorporating human-in-the-loop considerations on medication administration. 

The existing literature on wearable technologies is not limited to the above paragraphs. The 

summary of works done using wearables and AI techniques is shown in Table 1. 



 

 

Table 1. Summary of works done using wearables and AI techniques. 
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[66] SVM Construction Workers’ Stress Recognition     

[67] ANN Heartbeat Classification     

[68] Statistical analysis Activity recognition     

[69] Decision Trees 
Pharmacotherapy Management for 

Parkinson's Disease Patients 
    

[70] Long Short Term Memory (LSTM) Activity Recognition     

[71] Random Forest Physical Fatigue Detection     

[72] K-means  
Telemonitoring of patients with 

Parkinson's disease 
    

[73] K-Means Human Activity Recognition     

[74] 
Spectral Clustering, hierarchical 

clustering 
Human activity recognition     

[75] K-Means Human activity recognition     

[76] 
Expectation Maximization (EM) 

algorithm 
Activity recognition     

[77] K-means Detection of Poor Posture     

[78] Simple 1-NN classifier and SVM Location recognition from wearable video     

[56] LSTM Cardiovascular risk prediction     

[79] SVM Human activity recognition     

[60] Random forest Activity recognition     

[61] Genetic algorithm Categorization of brain signals     

[80] Convolutional neural networks Human activity recognition     

[81] Deep reinforcement learning 
Musculoskeletal modeling and locomotion 

analysis 
    

[82] Reinforcement Learning Activity recognition     

[83] Inverse Reinforcement Learning Activity forecasting     

[84] Deep Reinforcement Learning 
Individualized Treatment Planning for 

Parkinson's Disease 
    

[85] ANN Activity recognition     

[86] Inverse Reinforcement Learning Activity forecasting     

7 Wearable applications 
Wearables have already emerged in various application domains such as eyewear, sport trackers, 

healthcare, industry, etc. The wearable technologies are not exclusive to medical applications and they share 

common hardware/software across different domains. Therefore, reviewing wearables in different domains 

provides a broader perspective about wearable technologies. To gain better insight on the potential 

applications of wearables, applications related to healthcare, manufacturing, and industrial domains are 

reviewed. Some of existing wearable devices are presented in Table 2. Although performance statistics of 

wearable devices have not been the primary concern of this review, some performance statistics (Figure 4, 

Figure 7, and Figure 8) have been restated here from the reviewed papers.  

Table 2. Examples of existing wearables in various application domains. 

Application Wearable device name Device description 

Eyewear 

Chromatic smart glasses 

It is a smartwatch which has built-in activity tracker for fitness purposes, 

wireless charging capability, and HD camera for taking point of view 

(POV) photos. 

Vufine+ HD Wearable Display 

Vufine+ is a high definition wearable display which can be connected via 

HDMI to smartphone, laptop, or drone. Vufine+ can be used as a second 

monitor and it is clear enough for video and text display. 

Omni-Wearable Action Cam 

Sunglasses 

This device is sunglasses which features an integrated HD video camera to 

record the events happening around the user. 

Focals by North 

This device is smart glasses which offer augmented reality (AR). The goal 

of the device is displaying the notifications from the user’s phone directly 

into his/her field of view. 

Training GAME GOLF Digital Shot Tracking Accurate GPS shot tracker which is designed to help Golf players improve 



 

 

assistants System their shots and playing experience. 

Basketball Replay Analyser by Blast 

Motion 

This device records the actions of Basketball players and provides them 

with performance metrics so that the players can improve their 

performance. The device sensor which is attached to the waist of the body 

has wireless connection to an IOS device. 

Marlin 
Marlin is a waterproof device that helps swimmers with their training, 

open water navigation, and tracking. 

T-Goal Wearable Soccer Data Tracker 
A compact device that can track speed, distance, sprints, and positioning 

of soccer players as they play. 

Phoenix 

A medical exoskeleton which helps people with mobility disorders. The 

device makes it possible to stand up and walk. The device has two 

actuators at its hip. The knee joints provide support during stance and 

ground clearance during swing. 

Alex posture system 
This device monitors the posture of the user neck in order to improve 

his/her neck posture. 

Relaxation 

Beddr SleepTuner 

The sleep tuner helps the user to find out the main causes of poor sleep. 

The device can measure blood oxygen levels, heart rate, amount of time in 

bed, etc. 

BrainLink Lite V2.0 
A headset which helps the user with focusing and training, meditation and 

pressure relief. 

Vigo The Stimulating Headset 
A Bluetooth headset that monitors the driver’s eyelid motion to assess 

his/her level of drowsiness. 

Lumos Smart Sleep Mask 
A device that helps the travellers fight jet lag. To this end, the device 

transmits short light pulses to adjust the body clock. 

Smartwatches 

Aipower Wearbuds Basically, this device is the integration of headphones into smartwatch. 

Garmin Approach S20 Golf Watch 

A device for training golf which features a high-sensitivity GPS and 

provides the player with useful distance data. Using these data, the user 

can improve his/her shots. The device also provides daily activity tracking 

and smart notifications (e.g. incoming calls and messages). 

Parkinson Smartwatch 

A smartwatch that tracks Parkinson's disease. The patient records his/her 

condition changes using this device. The recorded data during the day is 

stored in a cloud service which is accessible anywhere in the world by the 

patient and his/her doctor. Based on the recorded data, the doctor 

prescribes optimal dosage of the medicine for the patient. 

Smartbands 

Misfit Ray 

The device automatically tracks the fitness and sleep metrics of the user. 

For example, number of taken steps, travelled distance, burned calories, 

and light/heavy sleep are tracked.  

Samsung Galaxy Fit 
The device provides fitness statistics such as heart rate. The device also 

allows the user to reply instantly with pre-set messages for incoming texts. 

Xiaomi Mi Smart Band 4 

Xiaomi Mi Smart Band 4 provides health monitoring such as heart rate. It 

has multiple tracking modes such as Treadmill, outdoor running, cycling, 

etc. which can be used during sport activities. Incoming calls, messages, 

and calendar notifications are also supported. 

Huawei Band 3 Pro 

Huawei Band 3 Pro supports notifications for incoming calls and messages 

as well as playing music. It also offers sport-related functionalities such as 

step count, calories burned, etc. 

E-patches 

Lief 

A wearable device that is designed for stress relief. Using Lief, the users 

learn how to train their body to stay calm and focused. Lief is an ECG 

smart patch which improves heart rate variability. Heart rate is a 

scientifically-proven biomarker of stress. 

Mesana 
This is a sensor patch which addresses issues within circulatory 

diagnostics and cardiovascular-prevention. 

VivaLNK Vital Scout 
VivaLNK Vital Scout is wearable patch that measures stress and recovery 

rates using medical-grade ECG sensors. 

Wearable Ultrasound Patch 
This is a patch which can measure internal blood pressure e.g. blood 

pressure inside deep arteries, heart, or lungs. 

7.1 Sports 
 In the sport applications, the wearable help the players to improve their skills in their favourite sports. 

Existing wearables in sport applications is shown in Table 2. Injury prevention is critical in any sport and 

wearable devices may be used to avoid potential injuries while players are enjoying their favourite sports. 

For example, Chen et al. [87] developed a fuzzy logic inference system which receives data such as 

temperature, humidity, etc. from wearable devices and determines the wearer’s  heat stroke possibility. Their 

approach can detect the possibility of suffering from heat stroke and the wearer can be alerted in time. 

Skazalski et al. [88] used commercially available wearable devices to monitor functional movements, heart 

rate, and workloads of volleyball players. The collected data can be used to maximize the players' 

performance and at the same time minimize possible injuries. 



 

 

7.2 Healthcare 
Considering that wearable devices are worn by their users, these devices have a lot of potential in 

providing mobile healthcare services. Different types of wearables e.g. smartwatches, on-body cameras [89], 

masks, E-patches, etc. have been developed for healthcare applications. The most common type of data 

measured by wearable for healthcare purposes include heart rate, blood pressure, body temperature, blood 

oxygen saturation, posture, and physical activities. 

7.2.1 Fitness 

Some of these devices are designed to track fitness-related activities. For example, chromatic smart 

glasses are an eyewear device which tracks the user activity for fitness purposes. Xiaomi Mi Smart Band 4, 

Misfit Ray, and Samsung Galaxy Fit are smartbands which provide fitness statistics. A short description of 

these devices is available in Table 2. Fitness-related wearables can motivate their users to increase their 

activity and become healthier but their measurements might not be accurate always. For example, Dooley et 

al. [90] have evaluated the performance of three wearables called Fitbit Charge HR, Apple Watch, and 

Garmin Forerunner 225. The experiment was conducted using 62 participants with age between 18 to 38 

years old. The three devices were used to measure the heart rate and energy expenditures of the participants. 

They reported that the accuracy of these three devices were within the acceptable range. 

7.2.2 Health status monitoring 

Some other wearables can be used to monitor the health status of their users. These devices may be 

capable of forecasting the potential health issues of people wearing them even before they feel sick or 

discomfort due to those issues. These devices may also take a step further and inform the doctor 

automatically [91]. It is needless to say that in some cases, early diagnosis of diseases can be lifesaving. 

Type of healthcare wearables such as Mesana is a sensor patch which addresses issues within circulatory 

diagnostics and cardiovascular prevention. Another example is a wearable ultrasound patch with the ability 

to monitor blood pressure in deep arteries. Two ECG-based patches are Lief and VivaLNK Vital Scout can 

be used. Lief helps to improve the heart rate variability which is useful for stress relief. VivaLNK Vital 

Scout helps to measure the stress and recovery rates. Two more ECG-based wearables have been developed 

to  monitor the patients with heart disorders by Winokur et al. [92] and Yang et al. [93]. 

Controlling the condition of patients who suffer from chronic diseases is as important as early diagnosis 

of diseases. For example, Parkinson patients may need to receive variable dosage of their medicines based 

on their body condition. The prescription of medicine dosage must be done by medical experts. However, 

access to experts may not be possible all the time. Hence, wearing Parkinson smartwatch helps to record the 

patient’s noticeable changes in his/her condition throughout the day. The recorded data can then be sent to a 

medical expert to receive appropriate dosage of the required medicines. Another Parkinson-related wearable 

has been developed by Lin et al. [94] helps to assess bradykinesia severity of Parkinson patients based on 

ten-second whole-hand-grasp action. Delrobaei et al. [95] proposed an objective dyskinesia score based on 

motion capture data obtained from a mobile full-body wearable system equipped with inertial measurement 

unit (IMU). 

Patients suffering from diabetes require constant monitoring. The wearable devices can play a major 

role in connecting patients with diabetes to their care teams for effective diabetes management [96]. Various 

technologies have already been developed to ease diabetes management. For example, Dexcom G6 CGM 

System is a smartphone-connected system for constant glucose monitoring (CGM) [97]. Receiving the right 

dosage of insulin based on the glucose level is critical. Hence, MiniMed 770G System [98] has been 

developed which is an insulin pump delivering appropriate dosage of insulin to the user based on glucose 

reading. Another wearable used to track the daily insulin intake has been developed by Companion Medical 

[99]. The wearable is a smart pen which connects to the patient's phone via Bluetooth. The patient uses the 

pen to inject insulin. The time of injection and the injected dosage is sent to the patient’s smartphone by the 

smart pen. This way the patient can easily manage the daily intake of insulin. Alfian et al. [100] have used 



 

 

DL to develop a blood glucose smart sensor. To this end, blood pressure, blood glucose, and heart rate were 

fed to a LSTM model for real-time diabetes classification using cloud service. 

Hemodynamics is the study of blood flow and researchers have developed a wearable cephalic laser 

blood flowmeter for investigation of hemodynamics upon changing body posture (e.g. rising from a sitting 

posture).  The developed device is worn on the tragus [101]. In another research, site-specific blood flow 

variations in people during running were detected using a laser doppler flowmeter which is wearable [102]. 

7.2.3 Helping with movement disorders 

Wearables can also help people with movement disorder. For example, Phoenix suit is a wearable 

exoskeleton which helps in the movement of knees and hips using small motors. The movement of the suit is 

controlled by pushing buttons integrated into the suit. The movement disabilities may have been acquired 

later in life. For example, people suffering from stroke may experience acquired disabilities. Patients with 

stroke need long-term therapy to regain their movement abilities. The therapies may be expensive or even 

inaccessible due to social and environmental factors. Wearable devices can be used to monitor the patient’s 

activities and provide feedback to the patient and therapist to make home exercise programs possible. An 

example of such wearable devices was developed by Burridge et al. [103]. Their wearable was equipped 

with embedded inertial and mechanomyographic sensors. The collected data from these sensors were used to 

classify functional movements of the patient to provide useful information. Another wearable device to 

monitor patient’s exercises was developed by Burns and Adeli [104]. This device can help patients with 

brain and spinal cord injuries to manage their exercise programs to recover their movement abilities. The 

developed wearable records patient’s physiological data as he/she performs the required exercises. The 

recorded data are then sent to clinicians from patient’s home. The clinicians carry out the necessary 

supervision based on the received data from the wearables, remotely. 

Even people without disabilities may need help and protection when they get old. Falling during 

walking is common among elderly people. While falling is not considered a major risk for young people, 

which may lead to severe injuries for old people. González et al. [105] used two accelerometers that are 

worn as bracelets and employed genetic algorithm (GA) for fall detection. Pannurat et al. [106] proposed 

another fall detection attempt using a wireless wearable accelerometer and classification algorithms.  Their 

method is a combination of a rule-based knowledge representation, a time control mechanism, and machine-

learning-based activity classification. The method has been used for fall detection at pre-impacts, impacts, 

and post-impacts, respectively. Another fall detection system for elderly people based on smartwatch data 

were proposed by Mauldin et al. [107]. They used a GRU RNN as the predictive model to perform fall 

detection. The predictive model was deployed on cloud to make real-time decision making. 

7.2.4 Mental health 

Mental health is as important as physical health and researchers have already begun to development of 

many wearables for mental condition monitoring. These wearables can usually determine human physiology 

status based on collected data such as heartbeat, blood pressure, body temperature, or ECG. One typical 

application of wearables is stress assessment. Choi et al. [108] collected heart rate and audio signals from 

children using wearable devices. These data coupled with support vector machine (SVM) were used to 

detect the stress patterns in children. Emotion board is another attempt made for stress detection [109] based 

on electrodermal activity (EDA). In this project, the collected skin conductance signals were processed using 

linear discriminant analysis (LDA) and classified using SVM. 

Wearable technologies can also be helpful in diagnosing and monitoring of psychiatric disorders such as 

depression. Valenza et al. [110] used PHYCE system to collect data for assessment of the depressive status 

in bipolar disorder. PHYCE is a wearable system prototype that detects the ECG using textile electrodes and 

acquires the respiration signal using piezoresistive sensors. In other research, Roh et al. [111] developed a  

system-on-chip (SoC) to accelerate filtering and feature extraction of heart-rate variability (HRV) from an 

ECG. They managed to improve the accuracy of depression recognition. 



 

 

7.2.5 Autism 

Children with autism spectrum disorder suffer from emotion recognition deficits. Therefore, they need 

help to improve their emotion recognition abilities. Daniels et al. [112] developed a prototype therapeutic 

tool using Google Glass for autistic children. They reported that autistic children had no problem in wearing 

the device. In their work, set of images illustrating different emotional states were shown to autistic children. 

Showing the correct emotional classification of images to the children via Google Glass improved their 

emotion recognition abilities. 

Another application using machine learning and wearable technology is the detection of stereotypical 

motor movements (SMMs) based on real-time measurements from IMU which are sent for processing to a 

cloud service [113]. SMMs are associated with autism spectrum disorders. The proposed approach consisted 

of two phases namely feature extraction and decision making. A CNN was used for feature extraction and 

the extracted features were fed to a LSTM for decision making. 

7.2.6 Healthcare wearables shortcomings 

Although wearable devices have considerable potential applications in healthcare domain, they have 

several shortcomings that must be addressed. For example, most of wearable devices are still in the 

prototype stage and need extensive evaluation before being qualified as final products. Wearable devices 

may connect to cloud services to process and store the data collected by them. Therefore, enforcing privacy 

of patients’ medical data is crucial. As the number of wearable devices grows, the amount of data generated 

by them grows as well. Thus big data can be considered both a concern and an opportunity for artificial 

intelligence research community. 

7.3 Industrial and manufacturing 
As industrial infrastructures evolve, performing the desired tasks with efficiency, accuracy and speed is 

highly desirable. With sufficient research and development, wearable devices can have the potential to 

revolutionize the modern industry. Whether humans can be totally replaced by machines in the future, is 

always debatable. The machines will take the humans’ place in doing repetitive and routine tasks. However, 

the total removal of human supervision is not likely in cases that human’s experience is required [114]. 

Currently, wearables have gained considerable share of consumer market. However, application of 

wearables in the industry is still limited.  

7.3.1 Examples of real-world industrial wearables 

There have been several research attempts to pave the road for application of wearables in the industry. 

In WearIT@work  project, wearable computing group has conducted research in application of wearables in 

production domain [114]. The research was carried out in Skoda Auto car manufacturing. The objective of 

the research was to replace the traditional paper-based car quality assurance performed at the end of the 

assembly line. A wearable device consisting of a belt-computer and a head-mounted display was developed 

in a way that the workers need not be trained in order to use it. The main achievement of this work was the 

identification of suitable methods for integrating wearable devices in real-life industrial scenarios. Some of 

unaddressed challenges of the proposed wearable were battery life for multiple working shifts and lack of 

reliable wireless communication at the user level. 

Wearable computer systems group at Carnegie Mellon University (CMU) has conducted another 

research entitled Navigator 2 about industrial applications of wearables [114]. The aim of this project was 

improvement of inspection routines of mobile workers. Before using the developed wearable, the workers 

had to complete a checklist with hundreds of pages. The checklist completion took four to six hours. 

Performing the same inspection routine but with the help of the developed wearable reduced the inspection 

time up to 50%. The proposed wearable had support for speech recognition leading to minimum interference 

of the wearable with the worker during inspection. The tackled challenges during this research were 

interface design, cognitive model, contextual awareness, and adaptation to tasks being performed. The 

factors left for further investigation were weight limit of the wearable and its long-term effect on the 

wearer’s body. 



 

 

Efficient order picking is critical to maximize the gain of any manufacturing line. Contextual computing 

group at Georgia Institute of Technology (Georgia Tech) has conducted a research to investigate the effect 

of using wearables for order picking [114]. The research was based on Google Glass which is a head-up 

display (HUD). The experimental results showed that using HUD to aid the workers with order picking task 

to reduce the possible human errors and part picking time. The unaddressed challenges of this research were 

wearability of head-mounted displays and optimization of decision making for mobile workers through 

wearable computing. 

7.3.2 Critical design factors for industrial wearables 

An important stepping stone towards making wearables practical in industrial applications is careful 

inspection of problems of using wearables in the industry. To this end, in [114], 25 enterprises were 

surveyed based on four aspects: 1. industrial sector, 2. application scenarios, 3. current data processing 

methods, and 4. data interaction level. The industrial sectors investigated by the survey were equipment 

manufacturing, metallurgy, chemical, warehousing, rail transit, airport, and harbour. The considered 

application scenarios were manufacturing execution, equipment management, order picking, remote 

assistance, asset management and warehouse operation. Manufacturing execution tracks and documents the 

transformation of raw materials into final products [115]. Equipment management revolves around checking 

status of large-scale facilities. Order picking is one of the common operations in e-commerce warehousing. 

Remote assistance is related to the application of augmented reality (AR) glasses. Asset management is 

related to checking inventory for non-production items. The data processing in the selected 25 enterprises 

was carried out using paper, personal digital assistant (PDA) or personal computer (PC).  

Based on the four aspects (industrial sector, application scenarios, data processing method, and data 

interaction level), the surveyed enterprises are partitioned and the results are shown in (a)-(d) of Figure 7. 

  
(a)  (b)  



 

 

 
 

(c) (d) 
Figure 7. Distribution of 25 enterprises surveyed in [114] for each of the four aspects: (a) industrial sector, (b) application scenarios, (c) data 

processing methods, and (d) data interaction level. 

To identify the key challenges and shortcomings of applying wearables in the industry, in the 25 

enterprises, multiple wearable devices have been tested by several users. Based on the received feedback 

from the users, five critical factors were determined which must be taken into account for designing 

practical wearables for industrial applications: 

1. Ergonomic product design:  

a. The wearables must be lightweight especially if they are head-mounted.  

b. The parts of the wearables that make contact with human skin must be made of comfortable 

materials. 

c. Wearables must provide hand-free experience for the users since they need to perform 

various tasks with their hands. Occupying the user’s hands or restricting their movements 

due to wired connections is not an option. 

2. Data interaction on device: 

a. The wearables should provide the key information concisely. Showing too much information 

on the wearable screen may disturb the user. 

b. Limiting use of touch screen and keyboard for receiving input from users. This factor is due 

to the fact that wearables usually do not support complicated data typing. 

c. Voice and gesture interaction may be used as supplementary interaction methods. 

3. Operational stability: 

a. The industrial wearables should be equipped with batteries that can last for more than eight 

hours (one work-shift) without charging. 

b. The stability of network connections such as Wifi, Bluetooth, etc. is critical in industrial 

environments. Moreover, the network connections should be easily deployable and they 

should be easy-to-use. 

c. Industrial environments are usually harsh with high temperature, humidity, and shock. The 

industrial wearables must stay operational under such conditions. 

4. External software integration: 

a. Considering that industrial wearables cannot work independently, they are required to be 

integrated into the enterprise systems seamlessly. 

b. The industrial wearables must have the ability to process data in real-time and make-

decentralized decisions. 

c. The wearables must allow the involvement of human experience whenever needed. 

5. External hardware integration: 



 

 

a. The wearables must be able to accept/collect data from machines or robots of the 

manufacturing site. 

b. The wearables must be able to control external equipment. Such requirement provides the 

user to control the equipment and intervene with the operation process if needed. 

c. The wearables must support human-machine cooperation. This way the flexibility of the 

human and the accuracy of the machines can be combined to improve efficiency. Using the 

wearable, the human can instruct the machines with a series of gestures and signs. 

Three wearable projects are reviewed in section 7.3.1 based on the five design factors presented above. 

The evaluation results are presented in Figure 8. Apparently, all three projects have tried to design their 

wearable devices in an ergonomic way. Wearable computing group has the best operational stability, 

whereas contextual computing group has the best data interaction on device. 

 

Figure 8. Result of evaluating three world-leading groups: (a) wearable computing, (b) wearable computer systems, and (c) contextual 

computing based on five factors (ergonomic product design, data interaction on device, operational stability, external software integration, 

external hardware integration). 

7.4 Human-robot interaction 
Human-robot interaction (HRI) is about establishing efficient, safe, and comfortable interactions 

between humans and robots. The interaction usually takes place via a wearable medium. That is where 

wearable devices come in. One of these wearables is a wrist-worn camera called WristCam [116] which is 

designed for hand gesture recognition. This wearable relies on speeded up robust features (SURF) [117] 



 

 

which are matched between successive frames of video captured by the camera. The user’s hand velocity is 

determined using feature matching. After hand gesture extraction, it is segmented based on a predefined 

gesture starting signal. The gesture segments are then classified using the dynamic time warping (DTW) 

[118] method. In addition to robot control based on hand gesture recognition, it is also possible to command 

a robot based on the walking pattern. Cifuentes et al. [119] proposed a human tracking approach for a 

service robot using a wearable IMU and laser ranger finder mounted on the robot. IMU was used to capture 

the walking pattern of the human and laser range finder was used to detect the human’s legs. Based on the 

sensed data, the human tracking system was able to control the robot such that it followed the human 

walking pattern. The tracking system was evaluated in an eight-shaped trajectory. 

One of the approaches to realizing HRI is skill learning. Fang et al. [120] proposed a skill learning 

approach for HRI using a wearable device. Their proposed system consists of two subsystems: 1. Robot 

teleoperation, and 2. Imitation learning. The teleoperation is implemented using the robotic operating system 

(ROS) [121] and is used to collect training data for imitation learning. Imitation learning relies on dynamic 

movement primitive (DMP) [122-124] to mimic the trajectory demonstrated by the user during the 

teleoperation phase. To this end, the user’s arm and hand motion are recorded using a wearable device 

equipped with multiple inertial measurements and magnetic units (IMMUs). 

Physical human-robot interaction (pHRI) can be used for rehabilitation, assistive devices, etc. Wearable 

devices that are used for pHRI must preserve their users’ comfort and safety. Ghonasgi et al. [125] proposed 

a  modular sensing panel for pHRI which has the ability to capture the fine nature of force transmission from 

compliant human tissue onto rigid surfaces in the wearable device. Their sensing panel uses force-sensing 

resistors (FSRs) and it is low-cost and can be adapted to a variety of human interfaces. Another work 

regarding pHRI was presented by Lenzi et al. [126]. The authors focus on a distributed approach for 

monitoring physical interaction between a user and a wearable robot. To this end, a distributed tactile sensor 

consisting of a matrix of optoelectronic sensors is used. The sensors are embedded in a thin and compliant 

silicone bulk onto the user-robot contact surface. While the tactile sensor is capable of measuring the 

pressure distribution on the wearable-human interaction area, it preserves the user’s safety and comfort and 

does not put any specific design constraint on the robot to house it. 

8 Wearable technologies challenges 
Nowadays, wearable devices are often available in the form of smartwatches which can connect with 

smartphones. In the future, wearables are expected to be seen in various forms designed for different 

applications. The world of the future is the world of wearable devices that can help the humankind in doing 

his duties. They can market in the fastest possible time by sharing the collected data and help to maximize 

the profit. It can be generalized to other aspects of life like in medical, geographical, or personal fields. The 

collected data by wearables in the form of text, video, audio or other specified forms can be shared to help 

with accurate disease diagnosis.  

The current generation of wearable devices is still far from perfect. The developed technologies are 

impressive albeit not mature enough. To unleash the full power of wearable devices, multiple challenges 

must be addressed. Some of the challenges faced by the wearable devices are briefly discussed in the 

sections below.  

8.1 Data collection 
The first challenge is related to data acquisition. The quality, quantity, resolution, and other parameters 

of the gathered data depend on the wearable device. Spatial resolution, temporal resolution, or data 

resolution are the factors which may impact data quality and quantity [127]. Collecting data from users in an 

optimal manner is challenging. The gathered raw data must be pre-processed before its clinical application. 

To this end, the measured quantities from different devices must be unified and their errors and statistical 

outliers must be removed. After being pre-processed, the data are ready to be used by data analytics. Data 

processing solutions for wearable data often rely on machine learning [128, 129]. Obtaining high quality 



 

 

labels for the data is time consuming and requires expert knowledge or intervention of the wearable user 

[130, 131]. Wearables that require insertion into the user’s body like insertable cardiac monitors, continuous 

glucose monitors, and insertable drug deliverables systems have their own challenges: 

 foreign body reaction may impede the functioning of biosensors and their data transmission, 

 inserted device might move unexpectedly. 

8.2 Data transmission 
Coming up with an energy-efficient solution to transmit data (collected by wearables) for further 

processing is crucial. The emergence of faster connection technologies such as 5G and beyond leads to ever-

increasing amount of data generation. Processing and storage of these data is challenging. Relying solely on 

centralized cloud computing is not an option due to data processing latency and significant load on network 

performance. Edge computing can reduce latency by moving the necessary computation on the network's 

edge. However, there are still issues with development of software and hardware of edge devices which 

must be fixed to meet the cloud computing load [132].  

8.3 Security and privacy 
Enforcing privacy, security, and trustworthiness while using wearables is still an open challenge [133]. 

The main feature of the wearables is continuous sensing and data collection. As mentioned in [134], most 

modern wearables can collect data about position, physical activity level, and mental health of users who 

wear them. From the user's point of view, these data might be considered sensitive, so enforcing their 

privacy cannot be overlooked. Currently, there is no unified solution to address all the potential security and 

privacy threats of wearables so more research and development are required to improve the security and 

privacy aspects of wearable devices.  

8.4 Localization quality 
In many applications of wearable technologies, precise localization of the wearable devices is 

important. Given that wearables are usually resource-constrained, achieving localization with acceptable 

precision is challenging. Therefore, improving the localization quality of wearable devices under limited 

computational power is needed. 

8.5 User adoption aspects 
The success of wearable technologies directly depends on how much the target users would accept to 

use them. User adoption is specifically challenging in medical and industrial applications. In all other 

applications, user adoption is a matter of personal choice. However, in medical and industrial domains, 

using wearables is more of a necessity than a choice. In the medical domain, the patients may feel 

discomfort and stress about wearing pervasive devices. This is mainly due to the complexity and excessive 

‘‘intrusiveness’’ of these devices. In the industrial domain, some workers may fail to understand the benefit 

and purpose of monitoring wearable devices and may resist using them. 

8.6 Resource constraints 
Providing new services and targeting new users require the development of advanced functionalities for 

the wearables. However, adding new functionalities increases the power consumption of already resource-

constrained wearables. Sometimes, the quality of the final wearable product is not met due to limited 

resource requirements. Therefore, managing energy consumption and yet achieving the expected 

performance is one of the most important challenges of the wearables. 

8.7 Interoperability 
In the internet of wearable things (IoWT), different wearable devices must be able to communicate with 

each other regardless of their technologies. Such device-to-device (D2D) communication between wearable 

devices with different computational power (e.g. low-end and high-end devices) is a stepping-stone toward 

the realization of various smart functions in a decentralized manner. Recall that an individual wearable 



 

 

device does not have much to offer due to its limited resources. However, with efficient management and 

D2D communication, the processing power of multiple wearables can be combined to achieve the complex 

tasks. Currently, reliable D2D communication is one of the open problems of wearable technologies. 

Moreover, to fully benefit from the IoWT, developing end-to-end solutions to achieve seamless integration 

of wearable things into existing systems is one of the great concerns. 

9 Discussion 
Wearables provide various monitoring and scanning features such as biofeedback or other sensory 

physiological functions like biometry-related ones [135]. Moreover, wearables are portable and can be used 

hands-free. Wearable devices may improve life quality significantly but first, they have to be cost-effective.  

According to [136], about half of people who purchase a wearable stop using it. One-third of them do 

this before six months. As reported in [137], elderly people have shown interest in using wearable devices 

for physical and mental health purposes. However, due to the lack of awareness about wearable 

technologies, currently many elderly people do not use wearables. Thus, people need to be trained about the 

working mechanism of wearable devices and their maintenance. 

The design and development of wearable devices must take into account user preferences. This is 

particularly important when the devices have to be worn for longer durations, for example during chronic 

diseases monitoring, or data collection about the user's activity level [138]. Being lightweight is one of the 

important user preferences about wearables which severely limits the battery capacity of wearable devices. 

Therefore, computational power and wireless communication of wearables will be limited.  

The sensors in wearable devices generate lots of data while walking or jogging. These data can be used 

to discover dominant patterns among the population. Researchers of nursing science have already taken 

interdisciplinary approaches to study the medical problems based on big data collected from a huge 

population. To this end, multiple professionals with complementary expertise have worked as a team [139]. 

Moreover, the growth of IoWT increases the complexity and amount of generated data. These data can be 

used for implementing IoT sensing-based health monitoring and management [140] and developing mobile 

health applications [141]. 

As described in section 8.7, interoperability is one of the challenges of wearable technologies which is 

an important direction for future works; it is also an important requirement for remote healthcare services. 

The fifth generation of wireless networking technology (5G) allows the connection of many hospital devices 

to the network and provides remote access from home. An example of remote healthcare using wearables is 

the Hospital Without Walls project developed by Australia’s Commonwealth Scientific and Industrial 

Research Organization (CSIRO). This project aims to monitor patients continuously in certain diagnostic 

categories [142]. In this project, a miniature, wearable, and low-power radio is used to transmit vital signs 

and activity information to a home computer. The data are then sent by telephone line or through the internet 

to appropriate medical experts. Another important future trend is the emergence of new wearable devices. 

For example, in the medical domain, it is expected that drug delivery systems will emerge in the form of 

wearable devices (e.g. MiniMed 770G in section 7.2.2.). Disease intervention by wearables is also expected 

via integration with actuators planted insides/on the body. AI methods have already attracted the attention of 

researchers of wearable devices. Authors in [143] presented a proof-of-concept for a seizure prediction 

system. This system utilized a deep learning classifier to distinguish between preictal and interictal EEG 

signals. The deep learning model in combination with neuromorphic hardware formed a wearable seizure 

warning system which is suitable for patient-specific settings.  

10 Conclusion 
Wearable technology is an essential building block in future information and communication 

technology (ICT) systems. However, wearable technology has not reached an acceptable level of maturity 

yet. Multiple challenges are still unaddressed with regard to data collection, data processing, 



 

 

communications, security, etc. The aim of this review was to give readers a broad overview of applications 

of wearable devices in sport, medical, and industrial domains. In future, it will be useful to also investigate 

the application of wearables in other domains. In this review, the role of AI methods in development of 

wearable devices has been investigated as well. As future research, further applications of AI techniques in 

wearable devices to improve the quality of life by monitoring physiological parameters or early automated 

detection of diseases can be investigated. 
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